Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 249: 118451, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341073

RESUMO

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.

2.
Transl Psychiatry ; 14(1): 55, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267423

RESUMO

Global emphasis on enhancing prevention and treatment strategies necessitates an increased understanding of the biological mechanisms of psychopathology. Plasma proteomics is a powerful tool that has been applied in the context of specific mental disorders for biomarker identification. The p-factor, also known as the "general psychopathology factor", is a concept in psychopathology suggesting that there is a common underlying factor that contributes to the development of various forms of mental disorders. It has been proposed that the p-factor can be used to understand the overall mental health status of an individual. Here, we aimed to discover plasma proteins associated with the p-factor in 775 young adults in the FinnTwin12 cohort. Using liquid chromatography-tandem mass spectrometry, 13 proteins with a significant connection with the p-factor were identified, 8 of which were linked to epidermal growth factor receptor (EGFR) signaling. This exploratory study provides new insight into biological alterations associated with mental health status in young adults.


Assuntos
Transtornos Mentais , Proteômica , Humanos , Adulto Jovem , Psicopatologia , Cromatografia Líquida , Nível de Saúde
3.
Plants (Basel) ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896043

RESUMO

The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.

4.
Viruses ; 15(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37632043

RESUMO

Soil Sinorhizobium phage AP-16-3, a strain phylogenetically close to Rhizobium phage 16-3, was isolated in a mountainous region of Dagestan, belonging to the origin of cultivated plants in the Caucasus, according to Vavilov N.I. The genome of phage AP-16-3 is 61 kbp in size and contains 62 ORFs, of which 42 ORFs have homologues in the genome of Rhizobium phage 16-3, which was studied in the 1960s-1980s. A search for Rhizobium phage 16-3-related sequences was performed in the genomes of modern strains of root nodule bacteria belonging to different species, genera, and families. A total of 43 prophages of interest were identified out of 437 prophages found in the genomes of 42 strains, of which 31 belonged to Sinorhizobium meliloti species. However, almost all of the mentioned prophages contained single ORFs, and only two prophages contained 51 and 39 ORFs homologous to phages related to 16-3. These prophages were detected in S. meliloti NV1.1.1 and Rh. leguminosarum OyaliB strains belonging to different genera; however, the similarity level of these two prophages did not exceed 14.7%. Analysis of the orphan genes in these prophages showed that they encoded predominantly virion structural elements, but also enzymes and an extensive group of hypothetical proteins belonging to the L, S, and E regions of viral genes of phage 16-3. The data obtained indicate that temperate phages related to 16-3 had high infectivity against nodule bacteria and participated in intragenomic recombination events involving other phages, and in horizontal gene transfer between rhizobia of different genera. According to the data obtained, it is assumed that the repetitive lysogenic cycle of temperate bacteriophages promotes the dissolution of the phage genetic material in the host bacterial genome, and radical updating of phage and host bacterial genomes takes place.


Assuntos
Bacteriófagos , Sinorhizobium , Siphoviridae , Humanos , Prófagos/genética , Lisogenia
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047311

RESUMO

The process of straw decomposition is dynamic and is accompanied by the succession of the microbial decomposing community, which is driven by poorly understood interactions between microorganisms. Soil is a complex ecological niche, and the soil microbiome can serve as a source of potentially active cellulolytic microorganisms. Here, we performed an experiment on the de novo colonization of oat straw by the soil microbial community by placing nylon bags with sterilized oat straw in the pots filled with chernozem soil and incubating them for 6 months. The aim was to investigate the changes in decomposer microbiota during this process using conventional sequencing techniques. The bacterial succession during straw decomposition occurred in three phases: the early phase (first month) was characterized by high microbial activity and low diversity, the middle phase (second to third month) was characterized by low activity and low diversity, and the late phase (fourth to sixth months) was characterized by low activity and high diversity. Analysis of amplicon sequencing data revealed three groups of co-changing phylotypes corresponding to these phases. The early active phase was abundant in the cellulolytic members from Pseudomonadota, Bacteroidota, Bacillota, and Actinobacteriota for bacteria and Ascomycota for fungi, and most of the primary phylotypes were gone by the end of the phase. The second intermediate phase was marked by the set of phylotypes from the same phyla persisting in the community. In the mature community of the late phase, apart from the core phylotypes, non-cellulolytic members from Bdellovibrionota, Myxococcota, Chloroflexota, and Thermoproteota appeared. Full metagenome sequencing of the microbial community from the end of the middle phase confirmed that major bacterial and fungal members of this consortium had genes of glycoside hydrolases (GH) connected to cellulose and chitin degradation. The real-time analysis of the selection of these genes showed that their representation varied between phases, and this occurred under the influence of the host, and not the GH family factor. Our findings demonstrate that soil microbial community may act as an efficient source of cellulolytic microorganisms and that colonization of the cellulolytic substrate occurs in several phases, each characterized by its own taxonomic and functional profile.


Assuntos
Ascomicetos , Microbiota , Solo/química , Avena , Bactérias/genética , Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Microbiologia do Solo
6.
Front Plant Sci ; 13: 884726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186063

RESUMO

Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.

7.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142684

RESUMO

Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates-oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates-Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components.


Assuntos
Lignina , Consórcios Microbianos , Bactérias/metabolismo , Celulose/metabolismo , Lignina/metabolismo
8.
Microbiol Resour Announc ; 11(4): e0102321, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35297685

RESUMO

Rhizobium ruizarguesonis (Rhizobium leguminosarum) strain 1TK341 was isolated from pink nodules of fixation-negative mutant line P61 of pea (Pisum sativum L.) grown in soil. Here, we report the draft genome sequence of the strain.

9.
Microbiol Resour Announc ; 11(3): e0108821, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35225668

RESUMO

Sinorhizobium meliloti is a symbiotic bacterial species forming nitrogen-fixing nodules on roots of annual and perennial Medicago spp. We report the full genome sequence of S. meliloti strain AK76, an effective symbiont of the wild diploid plant Medicago lupulina grown in the Mugodgary Mountain region, Kazakhstan.

10.
Microorganisms ; 9(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34946059

RESUMO

Rhizobium leguminosarum (Rl) is a common name for several genospecies of rhizobia able to form nitrogen-fixing nodules on the roots of pea (Pisum sativum L.) while undergoing terminal differentiation into a symbiotic form called bacteroids. In this work, we used Oxford Nanopore sequencing to analyze the genome methylation states of the free-living and differentiated forms of the Rl strain RCAM1026. The complete genome was assembled; no significant genome rearrangements between the cell forms were observed, but the relative abundances of replicons were different. GANTC, GGCGCC, and GATC methylated motifs were found in the genome, along with genes encoding methyltransferases with matching predicted target motifs. The GGCGCC motif was completely methylated in both states, with two restriction-modification clusters on different replicons enforcing this specific pattern of methylation. Methylation patterns for the GANTC and GATC motifs differed significantly depending on the cell state, which indicates their possible connection to the regulation of symbiotic differentiation. Further investigation into the differences of methylation patterns in the bacterial genomes coupled with gene expression analysis is needed to elucidate the function of bacterial epigenetic regulation in nitrogen-fixing symbiosis.

11.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737366

RESUMO

Plants can form various beneficial associations with soil microorganisms, such as associations with plant growth-promoting bacteria (PGPB). In this work, we report the full-genome sequence of the component of Mysorin biopreparation, identified as Microbacterium hominis, consisting of a single 3.5-Mbp circular chromosome.

12.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737367

RESUMO

The genome of a symbiotically effective salt-tolerant strain, Sinorhizobium meliloti S35m, isolated from alfalfa rhizosphere in soil native to the Caucasus region, was sequenced. Genomic islands, prophages, and elements of a potential CRISPR/Cas I type (Cas3_0_I) system were identified in the genome.

13.
Plants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287282

RESUMO

Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.

14.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381612

RESUMO

Rhizobium leguminosarum strain A1 is used in inoculation experiments with a wide range of pea (Pisum sativum L.) lines. In this study, we report the genome sequence of strain A1, consisting of a 5.06-Mbp circular chromosome and circular plasmids ranging from 804,800 bp to 154,738 bp long.

15.
PeerJ ; 7: e7495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497392

RESUMO

Arbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea (Pisum sativum L.) leaves associated with mycorrhization at key plant developmental stages. Plants of pea cv. Finale were grown in constant environmental conditions under phosphate deficiency. The plants were analyzed at six distinct time points, which corresponded to certain developmental stages of the pea: I: 7 days post inoculation (DPI) when the second leaf is fully unfolded with one pair of leaflets and a simple tendril; II: 21 DPI at first leaf with two pairs of leaflets and a complex tendril; III: 32 DPI when the floral bud is enclosed; IV: 42 DPI at the first open flower; V: 56 DPI when the pod is filled with green seeds; and VI: 90-110 DPI at the dry harvest stage. Inoculation with Rhizophagus irregularis had no effect on the fresh or dry shoot weight, the leaf photochemical activity, accumulation of chlorophyll a, b or carotenoids. However, at stage III (corresponding to the most active phase of mycorrhiza development), the number of internodes between cotyledons and the youngest completely developed leaf was lower in the inoculated plants than in those without inoculation. Moreover, inoculation extended the vegetation period of the host plants, and resulted in increase of the average dry weight per seed at stage VI. The leaf metabolome, as analyzed with GC-MS, included about three hundred distinct metabolites and showed a strong correlation with plant age, and, to a lesser extent, was influenced by mycorrhization. Metabolic shifts influenced the levels of sugars, amino acids and other intermediates of nitrogen and phosphorus metabolism. The use of unsupervised dimension reduction methods showed that (i) at stage II, the metabolite spectra of inoculated plants were similar to those of the control, and (ii) at stages IV and V, the leaf metabolic profiles of inoculated plants shifted towards the profiles of the control plants at earlier developmental stages. At stage IV the inoculated plants exhibited a higher level of metabolism of nitrogen, organic acids, and lipophilic compounds in comparison to control plants. Thus, mycorrhization led to the retardation of plant development, which was also associated with higher seed biomass accumulation in plants with an extended vegetation period. The symbiotic crosstalk between host plant and AM fungi leads to alterations in several biochemical pathways the details of which need to be elucidated in further studies.

16.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018578

RESUMO

Legume crops represent the major source of food protein and contribute to human nutrition and animal feeding. An essential improvement of their productivity can be achieved by symbiosis with beneficial soil microorganisms-rhizobia (Rh) and arbuscular mycorrhizal (AM) fungi. The efficiency of these interactions depends on plant genotype. Recently, we have shown that, after simultaneous inoculation with Rh and AM, the productivity gain of pea (Pisum sativum L) line K-8274, characterized by high efficiency of interaction with soil microorganisms (EIBSM), was higher in comparison to a low-EIBSM line K-3358. However, the molecular mechanisms behind this effect are still uncharacterized. Therefore, here, we address the alterations in pea seed proteome, underlying the symbiosis-related productivity gain, and identify 111 differentially expressed proteins in the two lines. The high-EIBSM line K-8274 responded to inoculation by prolongation of seed maturation, manifested by up-regulation of proteins involved in cellular respiration, protein biosynthesis, and down-regulation of late-embryogenesis abundant (LEA) proteins. In contrast, the low-EIBSM line K-3358 demonstrated lower levels of the proteins, related to cell metabolism. Thus, we propose that the EIBSM trait is linked to prolongation of seed filling that needs to be taken into account in pulse crop breeding programs. The raw data have been deposited to the ProteomeXchange with identifier PXD013479.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/isolamento & purificação , Proteoma/isolamento & purificação , Sementes/genética , Simbiose/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Cromatografia Líquida de Alta Pressão , Fungos/fisiologia , Ontologia Genética , Genótipo , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Micorrizas/fisiologia , /metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Nodulação/genética , Proteoma/classificação , Proteoma/genética , Proteômica/métodos , Sementes/química , Sementes/metabolismo , Microbiologia do Solo , Espectrometria de Massas em Tandem
17.
PeerJ ; 7: e6662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972251

RESUMO

Large collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the Sym11 gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an F 2-population from the cross between pea line N24 carrying the mutant allele of sym11 and the wild type NGB1238 (=JI0073) line. Sequencing libraries were prepared from bulks of 20 plants with mutant and 12 with wild-type phenotype. MACE-Seq differential gene expression analysis between mutant-phenotype and wild-type-phenotype bulks revealed 2,235 genes, of which 514 (23%) were up-regulated and 1,721 (77%) were down-regulated in plant roots inoculated with rhizobia as a consequence of sym11 mutation. MACE-Seq also detected single nucleotide variants between bulks in 217 pea genes. Using a novel mathematical model we calculated the recombination frequency (RF) between the Sym11 gene and these 217 polymorphic genes. Six genes with the lowest RF were converted into CAPS or dCAPS markers and genetically mapped on the complete mapping population of 108 F 2-plants which confirmed their tight linkage to Sym11 and to each other. The Medicago truncatula Gaertn. (Mt) homologs of these genes are located in a distinct region of Mt chromosome 5, which corresponds to linkage group I of pea. Among 94 candidate genes from this region only one was down-regulated-the pea Sym33 homolog of the Mt IPD3 gene which is essential for nodulation. Sequencing of the Sym33 allele of the N24 (sym11) mutant revealed a single nucleotide deletion (c.C319del) in its third exon resulting in a codon shift in the open reading frame and premature translation termination. Thus, we identified a novel mutant allele sym33-4 most probably responsible for the mutant phenotype of the N24 (sym11) line, thereby demonstrating that mapping by MACE-Seq can be successfully used for genetic mapping of mutations and identification of candidate genes in pea.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30643902

RESUMO

The inoculation of legume seeds with Sinorhizobium bacteria significantly improves pasture production. Here, we report the draft genome sequence of symbiotically efficient and salt-tolerant Sinorhizobium meliloti inoculant strain AK555, which substantially increases biomass yield of a number of Medicago sativa subsp. varia varieties, such as "Agniya," "Vega 87," and "Selena."

19.
Artigo em Inglês | MEDLINE | ID: mdl-30643907

RESUMO

Sinorhizobium meliloti is a Gram-negative bacterium which fixes atmospheric nitrogen in symbiosis with Medicago spp. We report the draft genome sequence of S. meliloti strain CXM1-105, associated with nodules of Medicago sativa subsp. varia (Martyn) Arcang.

20.
PLoS One ; 12(10): e0186713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073280

RESUMO

Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.


Assuntos
Bases de Dados Genéticas , Marcadores Genéticos , Genoma de Planta , Internet , Software , Ligação Genética , Lotus/genética , Medicago truncatula/genética , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...